9.2 Ein anderer Bauarbeiter hat eine durchschnittliche Leistung von 25 W. Wie lange bräuchte dieser Arbeiter, um die 250 Pflastersteine aufzuladen? (2P)

\[
\text{gleiche Arbeit wie oben } W = \frac{73.6 \text{ J}}{25 \text{ W}}
\]

\[
P = \frac{W}{t} \Rightarrow t = \frac{W}{P} = \frac{73.6 \text{ J}}{25 \text{ W}} = 2.9448 \approx 49 \text{ min}
\]

10.1 Fritzchen fährt mit einer Durchschnittlichen Leistung von 80 Watt einen Berg hinauf. Er benötigt eine drei viertel Stunde bis er oben ankommt. Die Gesamtmasse (Fritzchen mit Fahrrad) beträgt 60 kg. Welchen Höhenunterschied hat er überwunden? (4 P)

\[
\text{ges. } P = 80 \text{ W} \quad t = 45 \text{ min}
\]

\[
P = \frac{W}{t} \Rightarrow W = P \cdot t = 80 \text{ W} \cdot 45 \cdot 60 \text{ s} = 2.16 \text{ kJ}
\]

\[
m = 60 \text{ kg}
\]

\[
W = m \cdot g \cdot h \Rightarrow h = \frac{W}{m \cdot g} = \frac{2.16 \text{ kJ}}{60 \text{ kg} \cdot 9.81 \text{ m/s}^2} = 36.7 \text{ m}
\]

kleine Formelsammlung:

Druck: \(p = \frac{F}{A} \quad p = \rho \cdot g \cdot h \)

Arbeit: \(W = F \cdot s \)

Leistung: \(P = \frac{W}{t} \)

Energie: \(E_{\text{pot}} = m \cdot g \cdot h \)

Geschwindigkeit: \(v = \frac{s}{t} \)

Gewichtskraft: \(F_G = m \cdot g \)

Wirkungsgrad: \(\eta = \frac{\text{Nutzen}}{\text{Aufwand}} \)

Vorgehen bei Rechenaufgaben in der Physik:

1.) Ansatz (Formel)
2.) Formel nach der gesuchten Größe umstellen
3.) Zahlenwerte einsetzen (Einheiten beachten!)
4.) Ergebnis ausrechnen