Die Katheten sind gegeben!

Regel: \((\text{Hyp.})^2 = (\text{Katheke 1})^2 + (\text{Katheke 2})^2\)

\[
\begin{align*}
b^2 &= c^2 + a^2 \\
&= (9\text{ cm})^2 + (6\text{ cm})^2 \\
b^2 &= 117\text{ cm}^2 \\
b &= \sqrt{117}\text{ cm} \approx 10,82\text{ cm}
\end{align*}
\]

\[
\begin{align*}
\mathbf{u} &= a + b + c = \\
&= 6\text{ cm} + 10,82\text{ cm} + 9\text{ cm} = 25,82\text{ cm}
\end{align*}
\]

\[
A = \frac{1}{2} \cdot a \cdot c
\]

weil Katheten aufeinander senkrecht stehen.
\(a\) ist die Höhe zur Seite \(c\) u. umgekehrt.

\[
A = \frac{1}{2} \cdot 6\text{ cm} \cdot 9\text{ cm} = 27\text{ cm}^2
\]
2) \[C^2 = a^2 + b^2 \]
\[(9\text{cm})^2 = (6\text{cm})^2 + b^2 \]
\[81\text{cm}^2 - 36\text{cm}^2 = b^2 \]
\[45\text{cm}^2 = b^2 \]
\[\sqrt{45}\text{cm} = b \]

oder: nach der ersten Zeile \(-a^2 \) bleibt

ergibt: \[b^2 = c^2 - a^2 \]
\[b = \sqrt{c^2 - a^2} \], nun einsetzen...
3) \[a^2 + c^2 = b^2 \]
\[a^2 + (9\text{cm})^2 = (6\text{cm})^2 \]
\[a^2 = 36\text{cm}^2 - 81\text{cm}^2 \]
\[a^2 = -45\text{cm}^2 \]

! Das ist **unmöglich**, denn ein Quadrat ist nie negativ (in \(\mathbb{R} \)) bzw. man kann aus -45 keine Wurzel ziehen

\[\Rightarrow \text{Aufgabe nicht lösbar.} \]

Warum liegt's?

An den Angaben! Wenn \(\beta = 90^\circ \), dann ist \(\beta \) der größte Winkel und \(b \) muss die längste Seite sein.

Stimmt hier aber nicht, weil \(b < c \) gegeben ist.

So ein Dreieck kann es also gar nicht geben.
Rechne in einer Hälfte des Dreiecks. Der gesuchte Scheitel ist dabei die Hypothenuse.

\[s^2 = (3\text{cm})^2 + (4\text{cm})^2 \]
\[s^2 = 25\text{cm}^2 \]
\[s = 5\text{cm} \]

\text{Umfang:} \quad u = 2 \cdot s + g =
\[= 2 \cdot 5\text{cm} + 6\text{cm} = 16\text{cm} \]

\text{Fläche (direkt aus den geg. Längen)}

\[A_D = \frac{1}{2} \cdot g \cdot h = \]
\[= \frac{1}{2} \cdot 6\text{cm} \cdot 4\text{cm} = 12\text{cm}^2 \]
2 gleiche Seiten \rightarrow Schenkel 6 cm

rechtwinkige in der Hälfte des D

\[
\begin{align*}
\frac{z}{2} + x^2 &= S^2 \\
\frac{z}{2} + (2\text{cm})^2 &= (6\text{cm})^2 \quad \mid \quad 4\text{cm}^2 \\
\frac{z}{2} &= 32\text{cm}^2 \\
\frac{z}{2} &= \sqrt{32}\text{cm} \\
&\approx 5,66\text{cm}
\end{align*}
\]

Fläche: \(A_\Delta = \frac{1}{2} \cdot g \cdot h = \)

\[
\begin{align*}
&= \frac{1}{2} \cdot 4\text{cm} \cdot \sqrt{32}\text{cm} \\
&= 11,31\text{cm}^2 \\
\text{oder} &= 11,32\text{cm} \quad \text{wenn man statt} \quad \sqrt{32} \approx 5,66 \text{verwendet.}
\end{align*}
\]

Umfang: \(u = 2 \cdot 6\text{cm} + 4\text{cm} = 16\text{cm} \)
B = 6 cm, C = 3 cm

nützlich für Flächenformel ist AM.

\[\triangle BCM \text{ gilt: } BC^2 = BM^2 + MC^2 = (4 cm)^2 + (3 cm)^2 = 16 cm^2 + 9 cm^2 = 25 cm^2 \]

\[\frac{BC^2}{BC} = 5 cm \]

Umfang des Dreiecks:

\[u = 2 \cdot (AB + BC) \]

\[\frac{1}{2} u = AB + BC \]

\[8,5 cm = AB + 5 cm \Rightarrow AB = 3,5 cm \]

Pythagoras in \(\triangle BMA \): \(AB = 3,5 cm \) ist Hypoth.

\[AM^2 + BM^2 = AB^2 \]

\[AM^2 = AB^2 - BM^2 \]

\[= (3,5 cm)^2 - (3 cm)^2 = 12,25 cm^2 - 9 cm^2 = 3,25 cm^2 \]

\[AM = \sqrt{3,25} \approx 1,80 cm \]

Fläche: Diagonale \(AC = AM + MC = 5,8 cm \)

\[A = \frac{1}{2} AC \cdot BD = \frac{1}{2} \cdot 5,8 cm \cdot 6 cm = 17,40 cm^2 \]

oder \(17,41 cm^2 \)